

VADEMECUM

In the basic paper we have agreed to use the following units of measure which we call the Planck system of measure:

- Ptu Planck time unit
- Psu Planck space unit
- Peu Planck energy unit

With the following SI conversion formulas:

1 Ptu = 5.391 · 10⁻⁴⁴ s; => 1 s =
$$\frac{10^{44}}{5,39124}$$
 Ptu
1 Peu = 6.626075 · 10⁻³⁴ J; => 1 J = $\frac{10^{34}}{6,626075}$ Few
1 Psu = 1.616229 · 10⁻³⁵ m => 1 m = $\frac{10^{35}}{1,616229}$ Psu
 $\frac{1}{1}\frac{Peu}{Ptu} \approx 1.2290 \cdot 10^{10}$ W -
 $\frac{1}{1}\frac{Psu}{Ptu} = \frac{1,616229 \cdot 10^{-35} m}{5,39124 \cdot 10^{-44} s} = 299,787,989.40 \frac{m}{s} = c,$

i.e. the speed of light in a vacuum (Wikipedia considers your 299782458 m/s to be a more accurate value, it follows that at least one of the values 1 Psu or 1 Ptu should be recalculated)

To perform the calculations, I will use the following values:

h = $6.626075 \cdot 10^{-34} [J \cdot s]$, Planck's constant;

G = $6.67408 \cdot 10^{-11} [m^3 kg^{-1} s^{-2}]$ the gravitational constant;

1 Psu =
$$\sqrt{\frac{\hbar G}{c^3}}$$
 = 1.616229 · 10⁻³⁵ m, where $\hbar = \frac{h}{2\pi}$ is the Dirac constant;

M $_{\rm s}$ = 1.989 \cdot 10³⁰ kg – mass of the sun;

Proton mass: 1.673 ·10⁻²⁷ kg;

RS =
$$2 \cdot \frac{G \cdot M}{c^2}$$
 Schwarzschild radius;
SC _a = 365.2425 · 24 · 60 · 60 = 31,556,952 seconds/year.